Acute Loss of miR-221 and miR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Atherosclerotic plaque vulnerability is accompanied by changes in the molecular and cellular function in the plaque shoulder, including a decrease in vascular smooth muscle cell proliferation. We aimed to determine whether the expression of 3 miRNAs that regulate vascular smooth muscle cell proliferation (miR-145, miR-221, and miR-222) is altered with plaque rupture, suggesting a role in regulating plaque stability. METHODS miRNAs were measured in the plaque shoulder of carotid plaques obtained from patients undergoing carotid endarterectomy (CEA) for 3 distinct clinical scenarios: (1) patients without previous neurological events but high-grade carotid stenosis (asymptomatic), (2) patients with an acute neurological event within 5 days of the CEA (urgent), and (3) patients undergoing CEA>5 days after a neurological event (symptomatic). RESULTS Mean time from plaque rupture event to CEA was 2.4 days in the urgent group. The urgent group exhibited a significant decrease in miR-221 and miR-222 expression in the plaque shoulder, whereas no significant differences were seen in miR-145 across the 3 groups. Regression analysis demonstrated a significant correlation between time from the neurological event to CEA and increasing miR-221 and miR-222, but not miR-145. mRNA encoding p27Kip1, a target of miR-221 and miR-222 that inhibits vascular smooth muscle cell proliferation, was increased in the urgent group. CONCLUSIONS Atherosclerotic plaque rupture is accompanied by a loss of miR-221 and miR-222 and an increase in p27Kip1 mRNA expression in the plaque shoulder, suggesting an association between these miRNAs and atherosclerotic plaque stability.
منابع مشابه
microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression.
OBJECTIVE Inflammatory stimuli released into atherosclerotic plaque microenvironment regulate vessel formation by modulating gene expression and translation. microRNAs are a class of short noncoding RNAs, acting as posttranscriptional regulators of protein-coding genes involved in various biological processes, including vascular cell biology. Among them, microRNA-221/222 (miR-221/222) seem to n...
متن کاملThe potential inhibitory effects of miR-19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity
Atherosclerotic plaque growth requires angiogenesis, and acute coronary syndrome (ACS) is usually triggered by the rupture of unstable atherosclerotic plaques. Previous studies have identified typically circulating microRNA (miRNA/miR) profiles in patients with ACS. miRNAs serve important roles in the pathophysiology of atherosclerotic plaque progression. The present study aimed to investigate ...
متن کاملChronic miR‐29 antagonism promotes favorable plaque remodeling in atherosclerotic mice
Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target ...
متن کاملmicroRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers.
INTRODUCTION microRNA (miRNA) expression profile of extracellular vesicles is a potential tool for clinical practice. Despite the key role of vascular smooth muscle cells (VSMC) in cardiovascular pathology, there is limited information about the presence of miRNAs in microparticles secreted by this cell type, including human coronary artery smooth muscle cells (HCASMC). Here, we tested whether ...
متن کاملCirculating microRNAs as potential biomarkers for coronary plaque rupture
Coronary plaque rupture is the most common cause of acute coronary syndrome. However, the timely biomarker-based diagnosis of plaque rupture remains a major unmet clinical challenge. Balloon dilatation and stent implantation during percutaneous coronary intervention (PCI) could cause plaque injury and rupture. Here we aimed to assess the possibility of circulating microRNAs (miRNAs) as biomarke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 46 11 شماره
صفحات -
تاریخ انتشار 2015